データサイエンス教本 Pythonで学ぶ統計分析・パターン認識・深層学習・信号処理・時系列データ分析

Pythonでデータサイエンスの理論と実践を学ぶ

このような方におすすめ

・自身の専門分野,工学,経済,人文社会系でデータサイエンスを応用したい方
・センサデータなどの時系列データ分析を行いたい方
・Pythonで動的システムの分析や信号処理・解析を行いたい方
  • 著者橋本 洋志・牧野 浩二 共著
  • 定価3,888 (本体3,600 円+税)
  • B5変 344頁 2018/11発行
  • ISBN978-4-274-22290-0
  • 定価
  • ポイント0
  • 数量

※本体価格は変更される場合があります。
※通常2〜3日以内で発送いたします。

  • 概要
  • 主要目次
  • 詳細目次

 データサイエンスは、「データを科学的に扱う」学問分野であり、近年、ICTの進展によって、センサやインターネットを通じて取得できるデータ量が爆発的に増加したこと、コンピュータの高性能化に伴ってこれまでできなかった大規模なデータ処理が可能となったことなどから注目されています。

 本書は,データサイエンスの意味から金融データの分析、動的システムの分析などの工学応用までを、Pythonを使って実際に分析しながら学ぶものです.データの取り扱い、確率・統計の基礎といった基本的なところから、回帰分析、パターン認識、深層学習といった統計・機械学習手法、金融データなど時々刻々と変化する時系列データの分析、センサデータなどに含まれるノイズや外乱を見極めるスペクトル分析、さらにこのノイズや外乱を除去するためのディジタルフィルタ、そして最後に画像データの分析として画像処理の解説を行い、読者がデータサイエンスの一通りを俯瞰できるようになっています。

 Pythonを使った解説によって理論と実践を同時に学ぶことができるので、データサイエンスを学び、自身の分野に応用したい方にピッタリの一冊です。

https://www.ohmsha.co.jp/book/9784274222900/
1章 はじめに
2章 データの扱いと可視化
3章 確率の基礎
4章 統計の基礎
5章 回帰分析
6章 パターン認識
7章 深層学習(ディープラーニング)
8章 時系列データ分析
9章 スペクトル分析
10章 ディジタルフィルタ
11章 画像処理
おわりに
参考文献