本書は、大学初年次に学ぶ基礎数学科目の一つであり、具体的なところでは機械学習やコンピュータグラフィックス、ゲームプログラミングなどの基礎となる線形代数を、Pythonを使って学ぶものです。
線形代数は、微分・積分とならび基礎的な数学の一つですが、ふつうに勉強するとベクトル・行列計算が面倒くさく、また定義や概念が多く抽象的な表現も多いため、なかなか理解しづらい学問といえます。そこで本書は、Pythonによるプログラミングを用いて以下の工夫を施すことで、よりわかりやすく、またビジュアルにベクトルを見るなどの体験を通して、線形代数を学べるようにまとめたものです.
1)2次元平面や3次元空間のベクトルを視覚的に表現する
2)関数をグラフ化することで、ベクトル計算の意味を理解しやすくする
3)面倒なベクトルや行列の計算をプログラミングで表現する
4)手計算では不可能な高次の線形計算を、具体的なデータ(音や画像)を用いて表現する
5)通常の教科書の演習問題レベルの計算問題をプログラミングによる数式処理で求める
https://www.ohmsha.co.jp/book/9784274225338/
正誤表やDLデータ等がある場合はこちらに掲載しています
第1章 数学の基礎とPythonによる表現
第2章 線形空間と線形写像
第3章 基底と次元
第4章 行列
第5章 行列の基本変形と不変量
第6章 内積とフーリエ展開
第7章 固有値と固有ベクトル
第8章 ジョルダン標準形とスペクトル集合
第9章 力学系
第10章 線形代数の応用と発展