Pythonによる機械学習を行う上で、頻繁に遭遇すると思われる216の問題とその解決策を紹介します。データ構造、数値データ、カテゴリデータ、テキスト、画像、日時データの取り扱いといった基本から、特徴量抽出、次元削減、モデルの評価と選択、線形回帰、決定木、ランダムフォレスト、k-最近傍法、SVM、ナイーブベイズ、クラスタリング、ニューラルネットワークまで幅広い内容をカバー。この改訂版では、最新のフレームワークに対応するとともに、ニューラルネットワーク関連の項目をPyTorchベースで大幅に増量。「やりたいこと」「困っていること」に答えてくれる一冊です。
https://www.ohmsha.co.jp/book/9784814400843/
正誤表やDLデータ等がある場合はこちらに掲載しています